Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle.

نویسندگان

  • N Bursac
  • K K Parker
  • S Iravanian
  • L Tung
چکیده

Structural and functional cardiac anisotropy varies with the development, location, and pathophysiology in the heart. The goal of this study was to design a cell culture model system in which the degree, change in fiber direction, and discontinuity of anisotropy can be controlled over centimeter-size length scales. Neonatal rat ventricular myocytes were cultured on fibronectin on 20-mm diameter circular cover slips. Structure-function relationships were assessed using immunostaining and optical mapping. Cell culture on microabraded cover slips yielded cell elongation and coalignment in the direction of abrasion, and uniform, macroscopically continuous, elliptical propagation with point stimulation. Coarser microabrasion (wider and deeper abrasion grooves) increased longitudinal (23.5 to 37.2 cm/s; r=0.66) and decreased transverse conduction velocity (18.1 to 9.2 cm/s; r=-0.84), which resulted in increased longitudinal-to-transverse velocity anisotropy ratios (1.3 to 3.7, n=61). A thin transition zone between adjacent uniformly anisotropic areas with 45 degrees or 90 degrees difference in fiber orientation acted as a secondary source during 2x threshold field stimulus. Cell culture on cover slips micropatterned with 12- or 25- micro m wide fibronectin lines and previously coated with decreasing concentrations of background fibronectin yielded transition from continuous to discontinuous anisotropic architecture with longitudinally oriented intercellular clefts, decreased transverse velocity (16.9 to 2.6 cm/s; r=-0.95), increased velocity anisotropy ratios (1.6 to 5.6, n=70), and decreased longitudinal velocity (36.4 to 14.6 cm/s; r=-0.85) for anisotropy ratios >3.5. Cultures of cardiac myocytes with controlled degree, uniformity and continuity of structural, and functional anisotropy may enable systematic 2-dimensional in vitro studies of macroscopic structure-related mechanisms of reentrant arrhythmias. The full text of this article is available at http://www.circresaha.org.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues

The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potenti...

متن کامل

Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells.

Cardiomyocyte regeneration is limited in adult life. Thus, the identification of a putative source of cardiomyocyte progenitors is of great interest to provide a usable model in vitro and new perspective in regenerative therapy. As adipose tissues were recently demonstrated to contain pluripotent stem cells, the emergence of cardiomyocyte phenotype from adipose-derived cells was investigated. W...

متن کامل

Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells

Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...

متن کامل

Neonatal rat cardiomyocytes--a model for the study of morphological, biochemical and electrophysiological characteristics of the heart.

The neonatal rat cardiomyocyte model enables heart researchers to study and understand the morphological, biochemical and electrophysiological characteristics of the heart. This model offers a broad spectrum of experiments, such as studies of contraction, ischaemia, hypoxia and the toxicity of various compounds. This review examines the methodology for the isolation and cultivation of primary n...

متن کامل

P-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs

Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 91 12  شماره 

صفحات  -

تاریخ انتشار 2002